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H I G H L I G H T S  

� We carry out an analysis of snow level and temperature dynamics highlighting the relevance of non-parametric modelling. 
� Visitor number fitted model is transformed into future revenues projections. 
� We develop hedging strategies for protection of ski resorts’ profitability against adverse climate conditions. 
� Weather variables’ generated sample trajectories form the basis of profit and loss calculations. 
� We identify best-performing hedge portfolios with periodic reset of snow options, and combined snow-temperature options.  
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A B S T R A C T   

The aim of this paper is to analyze the performance of hedging strategies based on snow and temperature options 
developed by ski operators to protect their profitability under adverse changes in climatic conditions. The setup 
is based on a joint non-parametric model for snow and temperature aimed at providing a modelling support for 
the assessment of the impact of these weather variables on the number of visitors at the ski resort. The analysis is 
carried out considering the case of Austrian Alps, and examines: i) the ability of the proposed approach to 
provide a realistic representation of the true data-generating process; ii) the variability reduction in the Profit 
and Loss of the ski operator offered by the suggested strategies; and iii) the tradeoff between the budget ear
marked for hedging and profitability protection.   

1. Introduction 

The tourism sector plays an important role in many economies; for 
example, in Europe, its total contribution (direct, indirect and induced) 
to EU GDP and overall EU employment is, respectively, 10:2% and 
11:6% (WTTC 2017). In particular, winter tourism’s economic impact 
varies across different regions and areas, but for some of these, such as 
the Alpine region, it represents one of the main sources of income for 
local population across several industries, including accommodation, 
food services, transportation, arts and entertainment, and retail trade. In 
Austria and Switzerland, for example, the winter tourism industry is 
estimated to account for up to 49% of the countries’ annual overnight 
stays (ANTO 2016; STV-FST, 2016), to which a multiplier effect applies 
to account for income employment, government revenues and other 

inter-industrial relations. The tourism sector, though, is one of the most 
weather-sensitive ones, and winter tourism, in particular, is highly 
dependent on the level and reliability of the snow cover; as such, it has 
been earmarked as one of the most vulnerable industries to climate 
change (see Dawson & Scott, 2013, for example). 

Climate change is one of the most pressing global challenges society 
faces today. The United Nations has highlighted the potential for climate 
change to cause major disruption to national economies (see https 
://www.un.org/sustainabledevelopment/climate-change-2/), also due 
– amongst others – to negative impacts on agriculture and tourism. 
Given the high degree of adaptive capacity and flexibility of tourists, 
entire tourism sectors may lose attractiveness due to climate change. For 
instance, a study by Cavallaro, Ciari, Nocera, Prettenthaler, and Scuttari 
(2017) for South Tyrol puts in evidence a forecast shift in tourism 
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expenditure from the winter to the summer season, as Alpine regions 
gain attractiveness in summer due to more temperate conditions 
compared to hotter Mediterranean regions, whilst they lose it in winter 
due to less reliable natural snow cover. Further evidence of the impact of 
climate change on the ski tourism segment is offered, for example, in 
Wolfsegger, G€ossling, and Scott (2008) and Wyss, Abegg, and Luthe 
(2014). 

Adaptation strategies aimed at supporting ski tourism operators in 
managing the impact of weather variability and climate change are 
evolving along three main directions (see Bank & Wiesner, 2011; Scott & 
McBoyle, 2006). These include protection of the affected businesses in 
the form of snowmaking, slope contouring, landscaping and glacier 
protection; revenue diversification beyond traditional ski activities 
which, in many instances, leads to all-season facilities; and sharing of 
risks of financial impacts by either adopting a conglomerate business 
model or accessing the financial market for products such as weather 
derivatives. 

Although snowmaking is the most common adaptation strategy, 
Scott and McBoyle (2006) highlight how this raises important questions 
about its sustainability in certain locations, its environmental impact, 
and consequent potential government restrictions on, for example, the 
use of additives to help artificial snow last longer in above-average 
temperature conditions (like in Austria, for example, see Wolfsegger 
et al., 2008) and on water access rights in certain regions. Further, 
snowmaking and other technical strategies as well as strategies based on 
revenue diversification do involve high investment costs for infrastruc
ture and operating costs, especially in higher-average temperature 
conditions (see, for example, Damm, K€oberl, & Prettenthaler, 2014 for a 
cost-revenue study of snowmaking related to a site in Austria). 

In this context, weather derivatives can represent a useful comple
mentary measure to the other adaptation strategies for hedging against 
weather variability and climate change risk (see, for example, Damm 
et al., 2014; Damm, Greuell, Landgren, & Prettenthaler, 2017; Dawson 
& Scott, 2013; Toeglhofer, Mestel, & Prettenthaler, 2012, and references 
therein). Indeed, this class of products can play a significant role not 
only in hedging against non-catastrophic weather risk, but also in sup
porting other adaptation strategies as they can offer flexible means for 
stabilizing business profitability year-on-year and developing a suitable 
investment planning. In fact, they provide protection against lower-risk 
higher-probability scenarios, and are characterized by a payout which is 
usually based on a weather index (such as temperature level, snow level 
and rainfall); this latter feature guarantees at the same time trans
parency and promptness in the settlements, as these are irrespective of 
the actual impact of weather on companies. These features are in sharp 
contrast with conventional weather insurance, which instead is focused 
on higher-risk lower-probability events (one-time catastrophe, natural 
disaster) and are characterized by payouts based on a demonstrated loss. 
Transparency and settlements’ promptness of weather derivatives might 
also justify the interest and attention they attract from ski operators 
(Bank & Wiesner, 2011); although their applicability is hindered by a 
number of factors such as product and practice knowledge, access to the 
necessary financial resources, related high fixed costs, counterparty risk 
due to the over-the-counter nature of these contracts, transparency and 
basis risk. 

In this paper, we focus our attention on ski tourism, the core of 
winter tourism, with the goal of proposing possible risk management 
strategies based on weather derivatives, such as snow and temperature 
options, which are relatively transparent, easy to use and maintain, and 
can help protect the profitability of ski resorts. Due to the close links 
between these operators and their local communities, reducing the 
resort exposure to weather-induced risk also contributes to stabilizing 
the economies of such communities and protecting their investments. 

In details, we propose a joint non-parametric model for snow and 
temperature aimed at capturing the impact of these weather variables on 
ski operation viability and visitors’ decisions, and consequently the 
number of visitors at a given ski resort. This latter component becomes 

the main reference variable for the estimation of the ski resort revenues 
in need of protection. Specifically, we identify snow depth as a key 
variable (see Falk & Hagsten, 2016, and references therein) as, in order 
to determine the economic viability of ski areas, operators in Europe and 
North America use the so-called 100-day rule, according to which a 
snow depth of at least 30 cm is required for at least 100 days per season 
(see, for example, Abegg, Agrawala, Crick, & de Montfalcon, 2007; 
Steiger & Abegg, 2013). 

Our choice for a non-parametric model is in contrast with previous 
literature, such as Beyazit and Koc (2010) who impose a normal distri
bution to the (cumulative) level of the snow. A non-parametric approach 
constrains the shape of the fitted distribution of interest to a much lesser 
degree than parametric methods. The proposed methodological frame
work: i) is parsimonious and simple, requiring the estimation of only a 
few parameters, and the use of only standard statistical methods; ii) can 
flexibly capture dynamics that may contain trend and seasonality; iii) is 
extensible, i.e., may readily be modified to accommodate additional 
features, if desired, or weather variables such as rainfall, wind speed and 
global radiation; iv) is inexpensive in the sense that its implementation 
and analysis requires only standard, easily accessible software and data, 
as well as minimal human maintenance and oversight; v) does not 
impose a restriction of convenience on the distribution of the snow level; 
and vi) has very good statistical properties if a large dataset is available, 
such as for snow and temperature that exceeds 55 years. 

The hedging strategies proposed in this paper consider different 
portfolios of options on snow and temperature, with the aim of stabi
lizing ski resort revenues. As these are significantly affected by visitors’ 
decisions, which in turn are conditioned by a number of variables in 
addition to snow cover and temperature, such as available holidays, 
transportation and country of origin, there is an inevitable intrinsic basis 
risk in the hedge (technological basis risk). Additional basis risk arising 
with weather derivatives is the so-called spatial basis risk due to dif
ference between the reference weather index the derivative contract is 
linked to and the actual weather experienced at the location of interest. 
Thus, following standard financial theory for dealing with basis risk, our 
construction relies on the minimum variance principle applied to the 
position as a whole, after the cost of implementation is accounted for. 
The alternative strategies are then tested in terms of hedging effective
ness, tradeoff with the actual cost, and robustness with respect to spatial 
basis risk. 

We note that we focus on options as our derivative contracts of 
choice; this is motivated by the results of Broll, Chow, and Wong (2001) 
and Manfredo and Richards (2009), which suggest that the convexity of 
options makes them more appealing for hedging than forwards and 
other linear derivatives in the presence of non-linear risk exposure. 
Indeed, the work of Damm et al. (2014) highlights the high non-linearity 
between the level of snow and the number of visitors at the ski resorts, 
and therefore the revenues exposed to risk. The importance of non-linear 
models and methods in tourism demand is also highlighted in Baggio 
and Sainaghi (2016). Beyazit and Koc (2010) adopt snow options as well 
for hedging in their study, although the issue of basis risk is not dealt 
with; Đorđevi�c (2018) and Tang and Jang (2011, 2012), on the other 
hand, consider the case of snowfall forwards in the context of the min
imum variance principle. 

The paper is organized as follows. In Section 2, we introduce the 
dataset of interest; in Section 3, we illustrate the proposed modelling 
and methodological framework and perform empirical model compari
sons. In Section 4, we present a preliminary empirical analysis which 
leads to the construction, implementation and testing of the proposed 
hedging strategies, discussed in Section 5. Finally, Section 6 offers 
concluding remarks and highlights some pressing directions for future 
research. 

2. Data 

The dataset we consider includes observations of both snow and 
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temperature levels. A systematic climate change detection and analysis 
of sub-monthly climate extremes requires dataset with daily resolution. 
For this purpose, we use daily observational climatic time series that 
have been compiled for the European Climate Assessment (ECA) avail
able from http://www.ecad.eu/(Klein Tank et al., 2002). The European 
Climate Assessment and Dataset (ECA&D) is a database of daily mete
orological station observations across Europe and is gradually being 
extended to countries in the Middle East and North Africa. The series 
collected from participating countries generally do not contain data for 
the most recent years mainly due to time restrictions, for example, for 
data quality control. The ‘blended’ series has these gaps infilled by an 
automated update procedure that relies on the daily data from synoptic 
messages for the same or nearby stations (within 12.5 km distance and 
height differences less than 25 m) that are transmitted in near real time 
over the Global Telecommunication System. The synoptic data should 
be replaced once the ‘official’ series are available from the data pro
viders in participating countries. For more information about the un
derlying series used in the blending process, the quality control and 
homogeneity procedures, as well as comparisons with other datasets of 
lower temporal resolution, refer to https://www.ecad.eu/documents 
/atbd.pdf and Klein Tank et al. (2002). 

More specifically in this paper we consider the blended series of snow 
depth from station Sonnblick, Austria, a mountaintop site in the eastern 
Alps (3,106 m above sea level – highest observatory in the world to be 
operated year-round) for the period 1 November 1959 to 30 September 
2016 (20,774 daily observations). The series are regularly updated, 
together with concentrated and enhanced efforts on data quality control 
and homogenization. The daily-mean temperature is given by the 
average of the daily-maximum and daily-minimum. The daily-mean 
snow depth is calculated as the average snow depth of the available 
values at certain times during the day. For more information, refer to the 
summarized data characteristics in Table 1. 

Due to its daily resolution, the ECA&D enables a variety of empirical 
climate studies, including detailed analyses of changes in the occurrence 
of extremes in relation to changes in climate variables. 

3. Snow level and temperature modelling 

In this section, we present the joint model for snow and temperature, 
as changes in daily temperature conditions are expected to affect not 
only skiing operation feasibility, but also visitors’ decisions. For 
example, too low temperature levels can cause adverse variations in 
skiing demand, whereas too high temperature levels lead to snow melt, 
therefore, high likelihood for expensive artificial snowmaking, or 
shortened ski season, even ski area closure. 

We model the process of the generic weather variable W ¼ fS;Tg, 
where S denotes the snow depth and T the temperature, as the sum of a 
predictable component Λ and a stochastic component ε, 

Wt ¼Λt þ εt:

We discuss these two components in detail in the following. 

3.1. Seasonality in snow and temperature 

It is possible to represent the seasonal function in the following 
parametric form 

Λt ¼ λ0þ λ1tþ λ2sinð2πtÞ þ λ3cosð2πtÞ; (1)  

where the constant coefficients fλjg account for deterministic regular
ities, i.e., seasonal fluctuations and time trend capturing long-run 
climate change effects. We estimate fλjg by a non-linear regression of 
Wt on time t, for t ¼ 1;2;…;20,774 (total number of observations), using 
the Matlab function fitnlm based on the Levenberg–Marquardt non- 
linear least squares algorithm (see Seber & Wild, 2003). These esti
mates are reported alongside their standard errors and t-statistics in 
Table 2 and are statistically significantly different from zero. Not sur
prisingly, both the daily-mean temperature and snow depth exhibit 
significant regularities throughout the annual cycle with adjusted R2 of 
52% and 64% for the snow depth and the temperature, respectively. 
Moreover, the parameter estimates imply a positive (negative) trend for 
the temperature (snow), which can be attributed to global warming as 
our sample includes more than 55 years of data. From Table 2, the 
estimated parameter λ1, in fact, implies that the snow level reduces by 
0.49 cm per year, while the temperature increases by 0.03 �C per year. 

Alternatively, we have considered the possibility of estimating the 
seasonal effect in our weather variables for a particular period (e.g., 
January) by computing the average of the month’s daily observations 
across all the years in the sample, bypassing any parametric functional 
form assumption. A visual inspection of the empirical properties of the 
two approaches is presented in Fig. 1 (a)–(d). Results from both methods 
are similar, with the two deseasonalized time series εt exhibiting a 
significantly positive relationship (0.95 for snow, 0.96 for temperature), 
with non-trivial impact on the study hereafter. For series that contain a 
substantial trend a more sophisticated approach might be required (e.g., 
see Chatfield, 2004), although this is not necessary in our case. 

After removing Λt , we need to suitably model the stochastic 
component with the aim of generating sample trajectories of our climate 
variables and, subsequently, projecting the ski visitor numbers (see 
Section 4.1) and implementing the hedging strategies (see Section 5), 
which is the core of this research. To this end, in what follows, we 
consider, first, a (semi-)parametric bootstrap approach based on 
resampling of the residual series (see Section 3.2) and, second, non- 
parametric block bootstrap (see Section 3.3). 

Table 1 
The table presents the summarized data characteristics. Notes. UT: Universal 
Time; Latitude: þ ( � ) refers to North (South); Longitude: þ ( � ) refers to East 
(West).  

Data characteristics 

Station name Sonnblick 
Latitude (∘:’:’’) þ 47:03:00  
Longitude (∘:’:’’) þ012:57:00 
Station elevation (m) 3106 
Period 1-Nov-59–30-Sept-16 
Frequency of 

observation 
Daily (20,774 observations) 

Daily-mean 
temperature 

Average daily-max (06–18 UT) & daily-min (18 UT–06 UT 
current day) 

Daily-mean snow 
depth 

Average available values at 00, 06, 12 and/or 18 UT  

Table 2 
The table presents the estimates for the deterministic snow and temperature 
components Λt (see equation (1)) (number of observations ¼ 20,774; root mean 
squared error ¼ 114 – snow, 4.05 – temperature; adjusted R2  ¼ 0.521 – snow, 
0.645 – temperature; F-statistic vs. constant model ¼ 7.52eþ03 – snow, 
1.26eþ04 – temperature with p-value ¼ 0 – both).  

Coefficient Estimate Standard error t-statistic p-value 

Deterministic snow component 
λ0  273.0304 1.5867 172.0773 0.0000 
λ1  � 0.4948 0.0483 � 10.2532 0.0000 
λ2  10.2382 1.1217 9.1274 0.0000 
λ3  � 167.8955 1.1222 � 149.6184 0.0000 
Deterministic temperature component 
λ0  � 6.2447 0.0562 � 111.1072 0.0000 
λ1  0.0361 0.0017 21.1220 0.0000 
λ2  � 7.6187 0.0397 � 191.7430 0.0000 
λ3  0.7850 0.0397 19.7478 0.0000  
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3.2. An autoregressive model for the climate variables 

Consider the autoregressive (AR) model of order q, 

εt ¼φ0 þ
Xq

j¼1
φjεt� j þ ηt (2)  

with ηt independent and identically distributed random variables, and 
constant coefficients fφjg. The parameters fφjg are estimated by 
maximum likelihood available through the arima class of Matlab and are 
shown in Table 3. The lag length is chosen based on the Schwarz (1978) 
Bayesian Information Criterion (BIC) which is smallest for orders q ¼ 2 
and q ¼ 5 for snow and temperature, respectively. The sample Auto
correlation Function (ACF) and Partial Autocorrelation Function (PACF) 
plots of the filtered residuals fηtg in Fig. 2 show no significant auto
correlation. More formally, we conduct a Ljung–Box Q-test at 5, 10, 15 
and 20 lags, with adjusted degrees of freedom of the test statistic dis
tribution to account for the estimated parameters. The test confirms the 
sample ACF and PACF results. The null hypothesis that all autocorre
lations are jointly equal to zero up to the tested lag is not rejected for any 
of the four lags, with p-values ranging from 6% to 40% for the snow, and 
60% to 90% for the temperature (full results available upon request). 
Therefore, the models capture most of the dependence (after taking care 
of seasonality), i.e., fηtg can be considered to be white noise. 

In order to generate sample trajectories of the stochastic component 

Fig. 1. Snow and temperature seasonality. The figure presents (a), (c) the fitted deterministic seasonality component (see equation (1)) versus the average snow level/ 
temperature for each month; (b), (d) the scatterplot of deseasonalized components using parametric versus non-parametric seasonality. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
The table presents the estimates of the fitted AR(2) and AR(5) model, respec
tively, for the deseasonalized snow and temperature components εt (see equa
tion (2)) (Bayesian information criterion ¼ 1.6532eþ05 – snow, 9.3401eþ04 – 
temperature; Anderson–Darling test for normality p-value < 0.0005 – both). The 
estimates remained unaffected by the choice between parametric seasonality 
(see equation (1)) and non-parametric estimation of the seasonal effect (see 
relevant discussion in Section 3.1).  

Coefficient Estimate Standard error t-statistic p-value 

Deseasonalized snow component 
φ0  0.0002 0.1087 0.0018 0.0000 
φ1  1.0974 0.0033 331.9910 0.0000 
φ2  � 0.1046 0.0033 � 32.0859 0.0000 
Deseasonalized temperature component 
Coefficient Estimate Standard error t-statistic p-value 
φ0  0.0003 0.0163 0.0193 0.0000 
φ1  1.0656 0.0055 193.3800 0.0000 
φ2  � 0.4423 0.0078 � 56.4655 0.0000 
φ3  0.1933 0.0089 21.6681 0.0000 
φ4  � 0.0484 0.0091 � 5.3197 0.0000 
φ5  0.0231 0.0064 3.5855 0.0000  

L. Ballotta et al.                                                                                                                                                                                                                                 



Tourism Management 77 (2020) 104011

5

(2), we employ, by independence, standard bootstrap approach based on 
random resampling of the residual series fηtg corresponding to each 
month with replacement (Efron, 1979), and feeding of the bootstrap 
samples into the model. In particular, random resamples η* ¼ ðη�1; η�2;… 
; η�

~n
Þ are drawn from ðη1;η2;…;ηnÞ, where ~n is the number of days of each 

month, and n the total number of days of each month across all years in 
the sample, by generating ~n uniformly distributed pseudorandom in
tegers (data locations) between 1 and n. Due to joint modelling of the 
snow depth and temperature evolutions, we use common locations. By 
repeating several times, we obtain a collection of snow and temperature 
paths. Finally, as a benchmark, we fit the bivariate normal distribution 
to snow and temperature ηt corresponding to each month and generate 
sample paths using Monte Carlo simulation. The normality assumption 
is in line with Beyazit and Koc (2010); we formally test this in Section 
3.4. 

3.3. Block bootstrap approach to climate variables modelling 

Although parametric models have been widely used to model climate 
variables, their pitfall is the a priori assumption of the parametric 
functional form of the variable to be estimated. Misspecification often 

occurs because restrictive assumptions can lead to misrepresentative 
characterization of the true data-generating process, thus resulting in 
inaccurate inferences. Non-parametric approaches constitute an alter
native possibility as these are generally free from functional forms, 
hence flexible yet consistent. 

To avoid breaking up the dependence in the data, we resample the 
data using blocks instead of individual observations.1 By retaining the 
neighbouring observations together within the blocks, the dependence 
structure of the random variables at short lag distances is preserved. As a 
result, resampling blocks allows carrying this information over to the 
bootstrap variables. In particular, we use the moving-block stationary 
bootstrap introduced by Politis and Romano (1994) in which the length 
of block k, lk, is generated from a geometric distribution with probability 
θ, thus the average block length equals 1=θ. The kth block is given by 
Bk ¼ ðεi;εiþ1;…;εiþlk � 1Þ. By randomness of the block length, the method 
generates random resamples which preserve the serial dependence of 

Fig. 2. AR snow and temperature residuals autocorrelations. The figure presents the sample (partial) autocorrelation function of AR(2) snow residuals and AR(5) 
temperature residuals, ηt . 

1 If we apply instead standard bootstrap to serially dependent observations, 
as is the case with weather data, the resampled series will not retain the sta
tistical properties of the original dataset, yielding inconsistent results and sta
tistical inference (see Ruiz & Pascual, 2002). 
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the original series and are also stationary. The kth block begins from a 
random index i which is generated from the discrete uniform distribu
tion on f1;…;Mg, where M is the total number of sample dates, and 
random resampling with replacement is possible. As a generated block 
length is not limited from above, i.e., lk 2 ½1;∞Þ, and the block might 
begin with observation εM, the stationary bootstrap method ‘wraps’ the 
data around in a ‘circle’, so that ε1 follows εM, and so on. The different 
blocks together make up a bootstrapped time series. Then, by repeating 
a number of times, we obtain a collection of pseudo-time series of snow 
and temperature. To this end, we use Kevin Sheppard’s implementation 
of the stationary bootstrap on Matlab available freely online from http 
s://www.kevinsheppard.com/MFE_Toolbox, which returns the loca
tions of the original series, with optimal block length selected according 
to Politis and White (2004). As we are modelling jointly the snow depth 
and temperature evolutions, we use common locations. 

3.4. Visual diagnostics and distribution backtesting 

To get an idea about the fitted AR model of Section 3.2, we plot in 
Fig. 3(a) and (b) the empirical densities of the filtered AR residuals for 
both snow and temperature. A closer inspection via QQ plots in Fig. 3(c) 
and (d) indicates fat-tailed distributions, suggesting that the probability 
of rare events is much higher than what captured by the normal distri
bution. Fig. 3(e) and (f) exhibit consistent time plots. 

These indications motivate us to pursue formal testing of a particular 
model being the true data-generating process. We assess the perfor
mance of the models by examining the distributional properties of the 
simulated paths. Following Diebold, Gunther, and Tay (1998), a relevant 
approach is the Probability Integral Transform (PIT).2 More specifically, 
for each season commencing at t ¼ 1 November 1959;1960;…;2016 
and ending on 30 April of the same season (181 days per season), we 
generate the cumulative distribution forecast for each weather variable 
W. Then, at the end of every day, after the actual weather variable value 
wtþk, k ¼ 1;…;181, is observed, we calculate the probability of getting a 
value below the actual one by counting the number of generated values 
below that threshold; we denote this so-called transform probability by 
ptþk. Under a correct distributional specification, the time series of 
transform probabilities (i.e., the transformed weather variable trajec
tories) should be distributed independently over time as a standard 
uniform random variable. As for a given k, testing the null hypothesis 
H0: ptþkei:i:d: Unifð0;1Þ is cumbersome due to the restricted support of 
the uniform distribution, we transform ptþk using the standard normal 
inverse distribution function Φ� 1ð⋅Þ and test H0: ztþk ¼ Φ� 1ðptþkÞei:i:d:
N ð0; 1Þ (for more details about the inverse standard cumulative normal 
transform of the PIT sequence, see Berkowitz, 2001 based on an exten
sion of the Rosenblatt, 1952 transformation). Finally, we compute the 
Berkowitz (2001) statistic (likelihood ratio of normals) and the 
(asymptotic) probability of significance for every day k. 

Our results (available upon request) undoubtedly favour the block 
bootstrap approach which yields p-values suggesting 70% chance, for 
example in the case of temperature, of no significant evidence against it, 
implying its ability to generate distributions that are able to replicate the 
historical features of the weather variables. The (semi-)parametric 
approach is rejected based on highly significant evidence. The test 
outcome is also visually reflected in Fig. 4, which presents a comparison 
of the generated sample paths for the period 1 November to 30 April. 
This indicates the non-parametric method’s ability to capture the sea
sonal mean perfectly, and adequately the 1st and 99th percentiles. (Note 
that the comparison against the historical percentiles is less informative 
as they are monthly in order to ensure a sufficiently large total number 

of daily observations in a month across the sample years for use in their 
estimation.) 

In light of our empirical analysis, in what follows, we focus on 
generating required sample trajectories of the climate variables using 
the block bootstrap method in lieu of parametric techniques. 

4. Preliminary results and analysis 

4.1. Visitor numbers 

To model the ski visitor numbers, we consider the multiple regres
sion model of Damm et al. (2014) for daily visitor numbers based on 
snow and temperature and several dummy variables controlling, e.g., for 
ski openings, particular public holidays and school breaks. The fitted 
regression model for the daily visitor numbers Vt is 
ffiffiffiffiffi
Vt

p
¼ α0 þ α1lnðSt þ 1Þ þ α2Tt þ α3SkiOpeningþ α4PreXmasþ α5Dec8
þα6XmasEveþ α7XmasDayþ α8SchoolHolsþ α9April
þα10Fridayþ α11Saturdayþ α12PreXmas� Saturday

þα13PreXmas� Sundayþ α14SchoolHols� Saturdayþ εt;

(3)  

where εteN ð0;σ2Þ, S is the daily (non-negative) snow depth (cm), T the 
daily-mean temperature (�C), dummy “SkiOpening” indicates the day(s) 
of the ski-opening event, “PreXmas” the period from season start to the 
beginning of Christmas holidays, “Dec8” the 8th December holiday, 
“XmasEve” the Christmas Eve, “XmasDay” the Christmas Day, “School
Hols” the Austrian school holidays (Christmas, term break, Easter), 
“April” the April month (excl. Easter holidays), “Friday” the Fridays, 
“Saturday” the Saturdays, and “Sunday” the Sundays. The adjusted R2 is 
86:8%.3 

Simulated trajectories of the climate variables using the block 
bootstrap approach in Section 3.3 are passed into the fitted regression 
model (3) in order to generate sample trajectories of daily visitor 
numbers. In addition, for the feasibility of skiing activities a specific 
minimum snow depth is required, here, 30 cm. Zero visitor numbers are 
assumed for days with snow conditions indicating high chances for total 
ski area closure. Finally, we assume that our season extends from 1 
November to April end (see Damm et al., 2014). From Fig. 5, we can see 
that the simulated ski visitor numbers vary considerably during the 
winter season with peaks during Christmas holidays, weekends and 
public holidays, affecting the profitability of skiing operations. Abrupt 
downward movements of the visitor numbers outside the main part of 
the season implies that the likelihood of extreme negative outcomes is 
higher than what predicted by a normal model, and can be linked to lack 
of snow highlighting the importance of managing this type of risk. 

4.2. Empirical model assessment of snow conditions and skiing operation 

Regarding the critical snow depth, a common rule in the literature (e. 
g., Abegg et al., 2007; Koenig & Abegg, 1997; Scott, McBoyle, & Mills, 
2003) which is widely used nowadays for snow reliability and feasibility 
of skiing operations is the “100-days” rule, suggesting a snow depth of at 
least 30 cm for at least 100 skiing days per winter season (The rule may 
slightly vary, for example, Damm et al., 2014 found a threshold of 20 cm 
to be more relevant for their analysis.). 

In order to assess the reliability of snow cover, we estimate, using our 

2 Diebold et al. (1998) propose a density evaluation method which consists of 
computing the sequence of cumulative probability of the observed counts under 
the assumed forecast distribution (Probability Transform Integral). If the den
sity fit is adequate, this sequence will be uniformly distributed. 

3 The estimated parameters of the regression visitor model (3) are α0 ¼

48:365, α1 ¼ 3:8, α2 ¼ � 0:027, α3 ¼ 11:251, α4 ¼ � 32:603, α5 ¼ 12:522, 
α6 ¼ � 31:321, α7 ¼ � 21:911, α8 ¼ 12:613, α9 ¼ � 15:103, α10 ¼ 3:856, 
α11 ¼ 6:574, α12 ¼ 13:1, α13 ¼ 16:076, α14 ¼ � 11:438 and σ ¼ 20. Taking 
square root on the left-hand side of (3) has the advantage of not generating 
negative visitor numbers. In addition, it performed best in terms of R2 against 
tested alternatives such as log-transformation. See Damm et al. (2014) for fuller 
details. 

L. Ballotta et al.                                                                                                                                                                                                                                 

https://www.kevinsheppard.com/MFE_Toolbox
https://www.kevinsheppard.com/MFE_Toolbox


Tourism Management 77 (2020) 104011

7

simulated snow trajectories, the probability of having a specified mini
mum snow cover for at least 100 days from 1 December until 15 April, 
for different initial snow levels at the beginning of the season. Fig. 6 
shows the results which, as expected, suggest decreasing probability the 
higher the minimum snow cover required; also, the lower the initial 
snow level, the lower the probability of achieving a given minimum 
snow cover. For example, a reliable snow cover of 30–50 cm with at least 
70% chance, consistently with the assessment of Elsasser and Messerli 
(2001) of snow cover reliability in 7 out of 10 winters in a (Swiss) ski 
area, corresponds to minimum initial snow levels of 25–40 cm. Given 
this, in the ensuing hedging analysis, we assume an initial level of 30 cm, 
and examine the impact of upward and downward deviations on the 
effectiveness of our hedging strategies. Indeed, Fig. 6 shows that an 
initial level of 30 cm ensures excess reliable snow cover of up to 60 cm 
with 45% probability, whilst an initial level of 15 cm results in just 
30 cm of snow cover with the same probability. An initial snow level as 

low as 5 cm is not reliable at all, while an initial of 10 cm results in a 
snow cover of 30 cm with 11% chance. 

4.3. Projection of future revenues 

We transform the projected visitor numbers from Section 4.1 into 
revenues by assuming a day ticket mean price for the ski season 2016/17 
of c ¼ €29.75 (based on 425 ski resorts, source: http://www.skiresort. 
info/); this is consistent with the projection of Damm et al. (2014) for 
this period for ski lift ticket prices. Fig. 7 shows the cumulative per
centage of total revenues over the ski season against the cumulative 
percentage of days. Assuming, for example, an initial level of 30 cm, we 
find that the least-busy 50% of the days account for less than 20% of the 
season’s total revenues. In contrast, the busiest 10% of the days account 
for about 30% of the revenues. Same considerations hold for the case of 
an initial snow level of 50 cm. This is consistent with the empirical 

Fig. 3. Distributional characteristics of AR snow and temperature residuals. The figure presents (a)–(b) the empirical densities of the snow and temperature residuals, ηt , 
after fitting, respectively, the AR(2) and AR(5) models to the deseasonalized components (see equation (2)) against a normal density (indicated by the continuous 
plot); (c)–(d) the QQ plots of the quantiles of the residuals against the theoretical quantile values from the standard normal distribution (the plot appears linear if the 
distribution of the residuals is normal); (e)–(f) the time plot of the residuals for the period 1 November 1959 to 30 September 2016. 
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Fig. 4. Snow and temperature sample trajectories. The figure presents snow and temperature sample trajectories for the ski season 1 November to 30 April (181 days) 
generated by moving-block stationary bootstrap, standard bootstrap of AR residuals, and Monte Carlo (MC) simulation of fitted normal AR residuals. In addition, it 
presents simulated 1st and 99th percentiles (green point lines) versus historical estimates of 1st and 99th percentiles for each month (blue flat lines), and simulated 
means (red solid lines) versus seasonal means (black solid lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 5. Statistics of visitor numbers. The figure presents the mean and standard deviation of the projected daily numbers of visitors for the ski season 1 November to 30 
April, for different initial levels of snow S0 ¼ 15;30;50 cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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patterns observed by Hamilton, Brown, and Keim (2007). A lower initial 
level of, for example, 15 cm results in least-busy 50% of the days ac
counting for less than 10% of the season’s total revenues, whereas the 
busiest 10% of the days for approximately 40% of the revenues. 

5. Hedging exposure 

In this section, we explore different hedging strategies that a ski 
resort establishment could consider in order to protect its profitability 
against adverse weather conditions. 

As hedging positions based on weather derivatives are affected by 
spatial basis risk due to the difference between the weather conditions at 
the location of interest and the reporting station, in order to avoid un
necessary additional basis risk, the underlying of the chosen hedging 
instrument should be ideally directly connected to the revenues them
selves, i.e., to the number of visitors at the specific resort. Given the 
uncertainty and discretionary nature of this type of information (i.e., not 
certified by some official entity), derivatives on snow and/or tempera
ture might in a sense be easier to construct due to the fact that the in
formation about their seasonal level is provided by independent bodies. 
And, indeed, as the main business activity of ski resorts is snow sports, 
the risk factors affecting the firm’s revenues are primarily the snow level 
and the temperature. 

In this context, due to the observed non-linear relationship between 
revenue and snow level (see equation (3)), viable products for hedging 
might be represented by options on the cumulative daily snow level over 
the entire season, as in Beyazit and Koc (2010). Given the direct rela
tionship between the number of visitors and snow levels at the ski resort, 
typical protection against drops in profits is offered by (purchased) put 
option strategies; indeed, put options allow risk managers to construct 
portfolios with bounded revenues losses without imposing a cap on 
potential upside movements. We observe, though, that a potentially 

more effective cover could be obtained by considering periodically reset 
contracts on snow, possibly paired with contracts on temperature. 

Thus, in the next sections, we examine these alternatives, test their 
effectiveness in terms of protection measured by the percentage reduc
tion of the profits’ variability, and challenge their robustness with 
respect to spatial basis risk. For the purpose of the analysis that follows, 
we denote by p the premium of the option contract, m the corresponding 
percentage markup which captures the profit margin asked by the 
financial institution offering the contract, and r > 0 the continuously 
compounded risk free rate of interest. As the pricing of non-standard 
contracts, such as weather options, is a non-trivial problem, we defer 
the discussion on how the premium p is determined to Section 5.2. 

5.1. Hedging strategies 

Assume that the season starts at time t0 and ends at tN; the period ½t0;
tN� is divided in N equidistantly spaced sub-periods ½t0;t1�, ½t1;t2�;…;½tN� 1;

tN�. Further, we assume that the hedge period coincides with the season, 
although allowing for forward-start hedging and/or early hedge termi
nation is straightforward. 

In order to provide a general treatment which can be adapted to 
several circumstances, we consider the hedging strategy as a portfolio of 
option contracts (cases A1–A3) or a single option (case A4); each of these 
financial instruments is assigned a hedge ratio representing the loss 
amount protected by the corresponding instrument. To this purpose, let 
us denote by ϑðAÞ the vector of the hedge ratios characterizing the 
hedging strategy ðAÞ. In addition, let χðϑðAÞÞ be the terminal payoff of the 
strategy and B ðϑðAÞÞ the corresponding (future value of the) imple
mentation cost, i.e., the (forward) budget that the ski operator estab
lishment needs to set aside for risk management. The functions χðϑðAÞÞ
and B ðϑðAÞÞ are defined consistently with the hedge construction (see 

Fig. 6. Implementation of “100-days” rule for snow reliability. The figure presents the probability estimates of having different specified minimum snow covers for at 
least 100 days from 1 December until 15 April, for different initial levels of snow. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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cases A1–A4 later). The resulting Profit and Loss (P&L) function of the 
hedged position at the end of the selected horizon is 

ΠðAÞ ¼ c
XN

j¼1
Vtj þ χ

�
ϑðAÞ
�
� B

�
ϑðAÞ
�
:

The choice of the hedge ratio ϑðAÞ is based on the minimum variance 
principle and, therefore, is the optimal solution to the minimization 
problem 

min
ϑðAÞ

Var
�
ΠðAÞ

�
: (4) 

The P&L and its variance are computed using the simulated 

trajectories of the climate variables based on the block bootstrap 

approach in Section 3.3. Let ~ϑðAÞ be the optimal solution of (4), that is, 
the optimal monetary value of the compensation received, and ~Π the 
optimal hedge portfolio. A well-known consequence of the minimum 

variance principle is that ~ϑðAÞ is given by the coefficient of regressing the 
cash flows on the option net payoff; therefore, it is determined by the 
covariance between the cash flows and the option net payoff, which is 
the key to immunization against basis risk. The hedging effectiveness is 
then measured by the percentage variance reduction 

Fig. 7. Analysis of revenues over season. The figure presents the cumulative percentage of total revenues over the ski season against the cumulative percentage of days, 
for different initial levels of snow S0 ¼ 15;30; 50 cm. Note that the top red solid line indicates the revenue of the busiest 10% of the days; the bottom red solid line 
indicates the revenue of the least-busy 50% of the days. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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H ¼ 100

 

1 �
Varð~ΠÞ

Var
�

c
P N

j¼1Vtj

�

!

%: (5) 

For the current analysis, the following are the alternative strategies 
of interest. 

(A1) Strategy S: put options on daily snow level. The underpinning 
assumption is that the management of the ski resort can operate it 
smoothly when the current snow level is above a certain threshold KðSÞj , 
referred to as the strike level, during the whole or part of the season. In 
this case, the hedging strategy is formed by a basket of put options on the 
snow level, with each contract expiring at tj for j ¼ 1;…;N, so that 

χ
�
ϑðSÞ
�
¼ϑðSÞ

XN

j¼1

�
KðSÞj � Stj

�þ
;

where xþ ¼ maxðx;0Þ. 
The financial institution offering the contract expiring at tj adds onto 

the premium pj a markup m in order to cover the costs of doing business 
and create a profit, thus the actual price charged for such a contract is 
pjð1 þ mÞ. Therefore, in this particular case, the implementation cost is 
ϑðSÞð1 þ mðSÞÞ

P N
j¼1pðSÞj , with m taking a positive or negative value 

consistently with the sign of ϑ. The future value of the strategy is 

B
�
ϑðSÞ
�
¼ ϑðSÞ

�
1þmðSÞ

�XN

j¼1
pðSÞj erðtj � t0Þ:

For convenience, we may hold the strikes fixed across the expiry 
dates tj. For the details on the computation of pj, we refer to Section 5.2. 

(A2) Strategy ðS;TÞ: put options on daily snow and temperature levels. As 
pointed out in Damm et al. (2014), for example, snow reliability of ski 
areas depends on the level of temperature. Indeed, as reported in Abegg 
et al. (2007), under a þ 1�C scenario only 75% of the ski areas are still 
snow-reliable, while this percentage drops to 61% and 30% under a þ
2�C and a þ 4�C scenario, respectively. We note, though, that too low 
temperatures could make skiing uncomfortable. Thus, in order to 
financially protect the ski resort from reduction in the number of visitors 
due to either too cold climate or too high temperatures that the snow 
begins to melt, we augment the original strategy S with a strangle on 
temperature to achieve overall daily protection of the ski resort against 
both snow and temperature exposures throughout the season (or part of 
it). The strangle comprises one call and one put option on temperature, 
with the same maturity, but different strikes KðU;TÞj , KðL;TÞj for the call and 

put, respectively, with KðU;TÞj > KðL;TÞj . The resulting payoff of the full 
strategy is 

χ
�
ϑðS;TÞ

�
¼ ϑðSÞ

XN

j¼1

�
KðSÞj � Stj

�þ

þ ϑðTÞ
XN

j¼1

� �
KðL;TÞj � Ttj

�þ
þ
�
Ttj � KðU;TÞj

�þ�
;

with future value of the implementation cost 

B
�
ϑðS;TÞ

�
¼ ϑðSÞ

�
1þmðSÞ

�XN

j¼1
pðSÞj erðtj � t0Þ

þ ϑðTÞ
�
1þmðTÞ

�XN

j¼1

�
pðL;TÞj þ pðU;TÞj

�
erðtj � t0Þ:

For convenience, we may hold the strikes fixed across j. 
(A3) Strategy R: put options on monthly revenues. In this case, we 

consider as the relevant underlying variable the number of visitors; the 
strike for the options is based on the average monthly historical revenue 
for the season (November, December, …, April). Therefore, the hedge is 
given by a portfolio of options with terminal payoff 

χ
�
ϑðRÞ
�
¼ ϑðRÞc

XN

j¼1

�
KðRÞj � Vtj

�þ
;

Floating strike 

KðRÞj ¼

P Nj
k¼1Vtk

Nj
;

and Nj denoting the actual number of days in each month of the season. 
Consequently, the future cost is 

B
�
ϑðRÞ
�
¼ ϑðRÞ

�
1þmðRÞ

�XN

j¼1
pðRÞj erðtj � t0Þ:

We note that in this strategy the relevant strike price changes every 
month along the hedge horizon to reflect the corresponding monthly 
historical average number of visitors to the resort. This differs from the 
previous two hedging strategies in which the strike was fixed at incep
tion and kept constant to the end of the hedging period, although 
amending these to a non-constant strike, if required, would be 
straightforward. 

(A4) Strategy CS: put options on cumulative daily snow level as at the 
season end. This strategy is based on the cumulative daily snow level at 
the time the position is closed, as considered in Beyazit and Koc (2010). 
Therefore, the hedge is formed by only one contract, and the terminal 
payoff is 

χ
�
ϑðCSÞ�¼

�
KðCSÞ �

XN

j¼1
Stj

�þ
;

with future value of implementation cost 

B
�
ϑðCSÞ�¼ϑðCSÞ� 1þmðCSÞ�pðCSÞerðtN � t0Þ:

This strategy represents the benchmark against which the other 
strategies are tested in terms of hedging effectiveness. 

5.2. Option value 

The identification of the optimal hedge ratio by solving the optimi
zation problem (4) depends on the implementation cost of the hedging 
strategy, B , and therefore the price p of the contracts used to set up the 
hedge. 

The problem of determining a ‘fair’, market-consistent price for 
weather derivative instruments, though, is not trivial. Indeed, standard 
approaches to arbitrage-free pricing (e.g., Black & Scholes, 1973) are 
questionable in this case as, in general, it is not possible to construct a 
portfolio of ‘tradeable’ securities that replicates the payoff in question. 
We notice, however, that under the assumptions of a continuous-time 
capital asset pricing model with constant investment opportunity set, 
if revenues are uncorrelated with the market, then the risk can be 
considered as diversifiable and not be priced (see Merton, 1976 and 
references therein). This implies that option pricing can be legitimately 
carried out under the physical probability measure. 

For the purpose of verifying the above stated assumption, we 
construct an index of simulated daily returns for a hypothetical ski resort 
establishment using the simulated visitor numbers – specifically, we use 
10;000 daily return samples for a year. Then, we match these values to 
corresponding S&P 500 daily (bootstrapped) returns (see also Chance, 
Hillebrand, & Hilliard, 2008, for a similar application in the movie in
dustry). A comparison of the market index returns to the daily returns of 
the ski establishment shows no significant correlation in bivariate 
Granger-causality tests, as well as regressions including contempora
neous values, at reasonable lags (up to 20). The results are confirmed 
when the analysis is repeated using Thomson Reuters Datastream stock 
indices, i.e., world, regional (for our example, Austria) and sectoral 
(Austria travel & leisure in our case); these are capitalization-weighted 
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stock indices covering a minimum of 75% of the total market value. 
As a result of the above, we obtain the premium for an option 

expiring at time tj with generic exercise price K and terminal payoff 
Pðtj;KÞ directly under the ‘real-world’ probability as 

pj ¼Et0

�
e� rðtj � t0ÞP

�
tj;K

��
; (6)  

where Et0 denotes the conditional expectation with respect to the in
formation available at time t0. We estimate (6) using the simulated 
values of the weather variables (cases A1, A2, A4) or visitor numbers 
(case A3). Given the short life of the options and the currently low in
terest rates, we set r ¼ 0. 

5.3. Results 

The numerical analysis is organized as follows. Using 10;000 daily 
sample trajectories, we solve the optimization problem (4) in corre
spondence of different levels of the strike prices for each strategy 
considered in Section 5.1 and for different initial snow levels. Specif
ically, we vary the strikes KðSÞ, KðRÞ and KðCSÞ in strategies S, ðS;TÞ, R and 
CS respectively; however, we keep KðL;TÞ;KðU;TÞ for the temperature 
strangle in strategy ðS;TÞ fixed at � 6 �C and þ4 �C respectively. This 
choice is based on the quantiles of the historical distribution of tem
perature at the resort (see, for example, Fig. 4 and some common 
recommendation from a specialized source such as http://www.snow 

Fig. 8. Optimal hedges. The figure summarizes the different optimal hedges, for different initial levels of snow S0 ¼ 15;30;50 cm. Contract parameters: ticket price 
c ¼ €29.75; option price markup mðSÞ ¼ mðS;TÞ ¼ mðRÞ ¼ mðCSÞ ¼ 10%; KðL;TÞ ¼ � 6�C, KðU;TÞ ¼ þ 4�C. 
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-forecast.com/). We note, though, that the simulation results are rela
tively insensitive to the chosen range for KðL;TÞ;KðU;TÞ (more results 
available upon request). 

As KðSÞ, KðRÞ and KðCSÞ are the strikes of put options, higher values of 
these quantities correspond to higher option premiums, hence higher 
implementation costs. Thus, for comparison purposes, we report results 
in terms of the budget B , also with the aim of gaining insight into the 
tradeoff between the hedge cover and its cost. 

Results are summarized in Figs. 8 and 9, in which we plot respec
tively the resulting optimal hedge ratios and the corresponding hedging 
effectiveness – as measured by the index H defined in equation (5) – for 
both different levels of the budget B and the initial snow level S0. 

In details, each column of Fig. 8 illustrates the optimal hedge ratios ~ϑ 

in correspondence of different initial level of snow S0; each row, instead, 
classifies the optimal hedge ratios based on the originating strategy. We 
consider first strategies S, R and CS (rows 1, 3 and 4). The corresponding 
hedge ratios are all positive, consistently with the intuition of a pur
chased put option hedge, and decreasing as the budget level (i.e., the 
cost of the strategy) increases. As mentioned earlier, higher budget 
levels correspond to higher strike prices of the put options forming each 
strategy; this means that these put options move progressively more and 
more in the money; this implies that the payoff, and therefore the level 
of protection, offered by these contracts increases, as does the proba
bility of exercise. Consequently, a smaller multiplier is required to 
achieve an optimal level of insurance against adverse weather move
ments. For these strategies, we also observe that, ceteris paribus, the 

Fig. 9. Hedging effectiveness. The figure summarizes the effectiveness of the different optimal hedges, for different initial levels of snow S0 ¼ 15;30;50 cm. Contract 
parameters: ticket price c ¼ €29.75; option price markup mðSÞ ¼ mðS;TÞ ¼ mðRÞ ¼ mðCSÞ ¼ 10%; KðL;TÞ ¼ � 6�C, KðU;TÞ ¼ þ 4�C. 

L. Ballotta et al.                                                                                                                                                                                                                                 

http://www.snow-forecast.com/


Tourism Management 77 (2020) 104011

14

optimal hedge ratios decrease as the initial level of snow increases. This 
reduction in the optimal hedge ratio reflects the lower probability that 
the put options will be exercised, due to more favourable operational 
conditions for the ski resort; this effect also allows to keep the cost of 
implementation of the strategy under control. 

The second row of Fig. 8 reports the optimal hedge ratios of strategy 

ðS;TÞ; for each plot, ~ϑðSÞ can be read on the y-left-hand-axis, whilst ~ϑðTÞ

on the y-right-hand-axis. In the first place, we notice that strategy ðS;TÞ
entails a long position in the snow put options – similarly to strategies S 
and CS – and a short position in the temperature-based strangle. This 
reflects the inverse relationship between temperature and snow, and, 
therefore, the number of visitors at the resort and the corresponding 
revenues. Secondly, we note the significant difference in terms of scale 
between the two hedge ratios. Indeed, the (purchased) put option on 
snow takes a larger position in the hedging portfolio compared to the 

(written) strangle. Further, both ~ϑðSÞ and ~ϑðTÞ (in absolute terms) are 
decreasing functions of the budget B ; bearing in mind that KðL;TÞ;KðU;TÞ

are kept fixed in this analysis, the argument for ~ϑðSÞ is similar to what 
described earlier for the other strategies. This, though, implies a ‘sub
stitution’ effect as B increases: due to increasing strikes of the snow 
options, the weight of the protection is shifted more and more on the 
snow component, with consequent reduction of the amount invested in 
the temperature strangle. 

The optimal hedge ratios ~ϑðSÞ; ~ϑðTÞ (in absolute terms) are also 
decreasing functions of the initial level of snow. In case of a low level S0, 
as already observed, the largest fraction of the hedging portfolio is 
represented by the (purchased) put option on snow. The (written) 
strangle on temperature, though, provides a useful ‘top-up’ which re
flects the high sensitivity of the revenues to temperature movements 
outside the selected range and, therefore, their impact on skiing condi
tions. As S0 increases, revenues are less exposed to these changes and 

consequently less protection is required. We note that, although ~ϑðTÞ is 
relatively small (in absolute value) for large S0, its size reflects the re
sidual temperature risk: on the one hand, it is conceivable to assume that 
higher initial levels S0 are mainly related to lower temperature; the 
lower the temperature, the more uncomfortable skiing becomes, and as a 
consequence the more the put option segment of the strangle would 
move in the money, providing a larger portion of the hedging cover. On 
the other hand, copious snowfalls could also be associated with un
characteristically high temperature levels; in such situations, though, 
the risk of avalanches could be high with negative repercussions on the 
revenues of the ski resort due to (partial) closures for related safety 
operations. Indeed, avalanches represent a significant fatal risk for ski 
tourers (see, for example, Plank, 2016), the perception of which can also 
influence travel decisions (see Eitzinger & Wiedemann, 2007, for 
example) and, consequently, the profitability of the ski operators. The 
call segment of the strangle would, in such circumstances, provide a 
useful floor to revenues losses. 

In terms of effectiveness, as shown in Fig. 9, strategy R provides the 
maximal reduction in the variance of the P&L of the position (note the 
different scale on the y-axis). This is consistent with the fact that the 
underlying (i.e., the visitor numbers) of the hedging put option matches 
the underlying of the position requiring the hedge; basis risk effects in 
this case are, indeed, at the minimum level. Also, consistently with 
intuition, strategy CS based on cumulative snow level at the season end 
is the one performing worst amongst all considered in this analysis, 
especially for high initial levels of the snow S0. The more flexible con
tracts S and ðS;TÞ offer, indeed, a better control of the P&L variance 
thanks to the periodic reset they offer. We notice the similar perfor
mance of these two strategies, especially for a low initial snow level such 
as 15 cm: both strategies offer up to 89% variance reduction with a 
similar cost of 9 million, with strategy ðS;TÞ being less expensive. For 
higher S0 levels, the percentage variance reduction is still very similar 
for the two strategies, with strategy ðS;TÞ performing slightly better (for 

S0 ¼ 50cm, H
ðSÞ ¼ 83:17% and H

ðS;TÞ ¼ 83:27%), while also man
aging to offer up to 6.85% reduction in the implementation cost; this is 
due to the more comprehensive cover offered by strategy ðS;TÞ which 
exploits the interplay between the two components as explained earlier. 

The findings discussed earlier are also reflected in the implementa
tion cost of each strategy per fixed level of the index H . As a matter of 
fact, the H curves shown in Fig. 9 are concave functions of the budget 
B , with the exception of strategy R whose H curve is – along the in
terval considered in this study – increasing in the level of B . It is 
therefore possible to identify an optimal value of the (optimal) hedge 
ratios across all budget levels and a corresponding optimal efficiency 
level H �: for the considered interval of B , increasing the budget – and 
therefore the level of protection – in the case of strategies S, ðS;TÞ and CS 
does not necessarily always translate in a more effective hedging of the 
firm’s profitability. 

We conclude this section with a robustness check of the results ob
tained above with respect to spatial basis risk due to the difference be
tween the reference weather index to which the options forming the 
hedging portfolios are linked and the actual weather conditions expe
rienced at the location of interest. Indeed, as mentioned in Section 2, our 
weather data refer to the Sonnblick station (Austria), whilst the pa
rameters of the model for the number of visitors discussed in Section 4.1 
refer to a study site in Styria (Austria) – see Damm et al. (2014) for full 
details – which is located about 95 km away from the weather station. 
We note that such differences in weather conditions might also be due to 
the presence or not of artificial snow in the resort under analysis. 

To this purpose, we run a sensitivity analysis by stressing the 
regression parameters ðα1;α2Þ ¼ ð3:8; � 0:027Þ in equation (3) which 
control the dependence between the number of visitors, and therefore 
the revenues, and the level of snow and temperature, and determine the 
corresponding optimal hedge ratios and effectiveness. Specifically, we 
consider the cases in which both parameters are stressed by adding/ 
subtracting multiples of their standard errors (see Damm et al., 2014), 
ðs1; s2Þ ¼ ð0:183; 0:005Þ. Thus, we generate four alternative scenarios: 
S 1 ¼ ðα1 � 3s1;α2 � 3s2Þ, S 2 ¼ ðα1 þ 3s1;α2 � 3s2Þ, S 3 ¼ ðα1 � 3s1;

α2 þ 3s2Þ, S 4 ¼ ðα1 þ 3s1;α2 þ 3s2Þ. We note that S 1 and S 4 can be 
interpreted, respectively, as scenarios of lower/higher ‘volatility’ of the 
visitor numbers with respect to the weather indices of relevance, and 
therefore as scenarios of minimum/maximum spatial basis risk. 

The behaviour of the hedge ratios ~ϑðAÞ and the corresponding effec

tiveness H with respect to the budget level ~B
ðAÞ is qualitatively the 

same as the ones of the reference case shown in Figs. 8 and 9. Consis
tently with intuition, the hedging portfolio requires a larger position in 
the hedging instruments in presence of higher level of basis risk and, 
consequently, it becomes more expensive to maintain. Note that in the 

interest of readability, we do not report the actual values ~ϑðAÞ and H for 
each strategy in each stress scenario (complete results available upon 
request), but focus, instead, on the comparison of the optimal effec
tiveness levels of the strategies under each scenario, which we label as 
H S i , i ¼ 1;…; 4, with the one of the reference case. Results are sum
marized in Fig. 10 and Table 4. 

Starting with Fig. 10, the height of each bar represents the optimal 
effectiveness H � of the reference case as identified in Fig. 9; the error 
bars indicate the range between the largest and smallest values of H �

S i 

across all the stress scenarios. We observe the following points: the 
largest optimal value of the hedge effectiveness is generated for all 
strategies by scenario S 4, that is, H �

S 4
, corresponding to the case of 

largest possible spatial basis risk with respect to the reference case; the 
smallest optimal hedge effectiveness originates, instead, from scenario 
S 1, that is, H �

S 1
, which identifies a situation with lowest level of basis 

risk. 
Overall, the variations as indicated by the error bars are relatively 

small, particularly for strategy R; strategy CS, on the other hand, seems 
the most affected. This suggests that the minimum variance principle, on 
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which the construction of the hedge is based, performs successfully in 
keeping the basis risk at a minimum level, so that even a sub-optimal 
hedging ratio (with respect to the actual weather conditions at the 
location of interest) is relatively satisfactory in offering an effective risk 
cover. The robust performance is supported by the non-linearity of the 
contracts chosen for the purpose, and their design – consistently with 
our previous findings. Thus, these observations suggest that for hedging 
principles robust with respect to basis risk, such as the minimum vari
ance one, the choice of the weather station is less critical in managing 
the spatial basis risk in the case of weather derivatives. This is also 
consistent with the findings of Manfredo and Richards (2009). 

These results are also confirmed with respect to the tradeoff between 

efficiency levels and cost of the hedge, i.e., the budget level B . In order 
to better quantify this aspect, we argue as follows. Recall that the 
reference case is characterized by an optimal hedge effectiveness H

�

which is achieved with an implementation cost B �; similarly, the stress 
scenarios S i, i ¼ 1;…; 4, are associated with an optimal effectiveness 
H
�
S i 

with cost B �
S i

. The tradeoff between efficiency and cost can then 
be quantified by the multiplier of the budget that is requested in scenario 
S i to achieve a particular effectiveness level compared to the reference 
case. If M > 1 (< 1), the hedging portfolio in the reference case is (is not) 
to be preferred to the one of scenario S i. The multipliers of each 
strategy are reported in Table 4 for all stress scenarios and initial snow 
levels considered in this study; the numbers confirm the relative robust 
performance of the proposed hedges with respect to basis risk. 

MS i ¼
H
�

S i
B
�

S i

H
�
B
� ; i ¼ 1;…; 4; (7)  

6. Conclusions 

We propose a methodology for the identification of effective hedging 
strategies for ski tourism operators based on weather derivatives, such as 
snow and temperature options. Such contracts have attracted attention 
from the industry in virtue of the payoff transparency and settlements’ 
promptness which characterize them. However, their usage is hindered 
by a number of factors such as basis risk and counterparty risk. The 
results shown in this paper demonstrate that these products can be very 
effective for hedging against basis risk. Counterparty risk, on the other 
hand, is due to the fact that these weather derivatives are mainly traded 
over the counter. The robust performance offered by these contracts as 
shown in this paper, though, could be considered as a strong argument 
for market makers as to further develop the weather derivatives market. 

Our analysis focuses on natural snow conditions, therefore it does not 
include artificial snow. This choice is motivated by our aim to focus on 
the role of weather derivatives as tools for stabilizing business profit
ability and facilitating the implementation and maintenance of adap
tation strategies such as snowmaking, whose economic profitability is 

Fig. 10. Impact of spatial basis risk on hedging effec
tiveness. The figures exhibit for different initial levels 
of snow S0 ¼ 15;30;50 cm the optimal hedging 
effectiveness level H � for the reference case identi
fied in Fig. 9. Error bars indicate the range between 
the largest and smallest optimal values of H �

S i
, with 

S 1 ¼ ðα1 � 3s1; α2 � 3s2Þ, S 2 ¼ ðα1 þ 3s1; α2 �

3s2Þ, S 3 ¼ ðα1 � 3s1; α2 þ 3s2Þ, S 4 ¼ ðα1 þ 3s1;

α2 þ 3s2Þ. Contract parameters: ticket price c ¼
€29.75; option price markup mðSÞ ¼ mðS;TÞ ¼ mðRÞ ¼
mðCSÞ ¼ 10%; KðL;TÞ ¼ � 6�C, KðU;TÞ ¼ þ 4�C.   

Table 4 
The table presents the multipliers MS i (see equation (7)) for different initial 
levels of snow S0 ¼ 15;30; 50 cm, and hedging strategies in scenarios S i, i ¼ 1;
…; 4, obtained by stressing the coefficient parameters of snow level and tem
perature in the regression model of the number of visitors (see equation (3)). In 
details: S 1 ¼ ðα1 � 3s1;α2 � 3s2Þ, S 2 ¼ ðα1 þ 3s1;α2 � 3s2Þ, S 3 ¼ ðα1 � 3s1;

α2 þ 3s2Þ, S 4 ¼ ðα1 þ 3s1; α2 þ 3s2Þ. Contract parameters: ticket price c ¼
€29.75; option price markup mðSÞ ¼ mðS;TÞ ¼ mðRÞ ¼ mðCSÞ ¼ 10%; KðL;TÞ ¼ �

6�C, KðU;TÞ ¼ þ 4�C.  

S0  Strategy S 1  S 2  S 3  S 4  

15 cm S 0.92 1.07 0.92 1.12 
S;T  0.92 1.06 0.93 1.15 
R 0.96 1.07 0.96 1.05 
CS  0.91 1.08 0.90 1.25 

30 cm S 0.80 0.99 0.81 1.12 
S;T  0.80 0.98 0.81 1.10 
R 0.98 1.05 0.96 1.07 
CS  0.82 1.09 0.85 1.25 

50 cm S 0.92 1.08 0.87 1.28 
S;T  0.87 0.97 0.85 1.21 
R 0.98 0.96 0.98 1.04 
CS  0.85 1.06 0.91 1.26  
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threatened, too, by climate change (see Damm et al., 2014). 
The results reported in this paper refer to the case of one single 

resort; the analysis could be extended to the case of ski conglomerates 
with multiple properties on the line of the work of Tang and Jang 
(2011), but we leave this to future research. 
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